Section 4.2 Maximum and Minimum Values

(1) Absolute and Local Extrema
(2) The Extreme Value Theorem
(3) The Closed Interval Method

Local Extrema

A function f has a local maximum at c if $f(c) \geq f(x)$ for x "near" c. That is, $f(c) \geq f(x)$ for all x in some open interval containing c.

A function f has a local minimum at c if $f(c) \leq f(x)$ for x "near" c.

Local Extrema

- The term "extremum" is shorthand for "maximum or minimum."
- If f has a local extremum at c, then $y=f(c)$ is a local extreme value and $(c, f(c))$ is a local extreme point.
- An endpoint of the domain f of cannot be a local extremum, because it cannot be contained in any open interval in the domain.
- A function does not necessarily have to have any local extrema:

No maximum.
No minimum.

No maximum.
Minimum value is 0 .

Absolute Extrema

A function f has an absolute maximum at c if $f(c) \geq f(x)$ for all x. A function f has an absolute minimum at c if $f(c) \leq f(x)$ for all x.

- Unless it is an endpoint, each absolute extremum is also a local extremum.

Example 1: Absolute Extrema

A function can have at most one absolute maximum value, but any number of absolute maximum points.

Example 1(a): $f(x)=x^{2}$ has no absolute maximum, because x^{2} can be arbitrarily large.

Example 1(b): $f(x)=-x^{2}$ has absolute maximum value 0 at the point $(0,0)$.

Example 1(c): $f(x)=\cos (x)$ has absolute maximum value 1 and infinitely many absolute maximum points: $(k \pi, 1)$ where k is any even integer.

Example 2: Local and Absolute Maxima and Minima

Local maxima: $x=-2, x=2$, all x in $(-1,0)$
Local minima: $x=1$, all x in $[-1,0$)
Absolute maximum: $(-2,3)$
Absolute minimum: None

Critical Numbers and Fermat's Theorem

A number c in the domain of f is called a critical number if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Fermat's Theorem

If f has a local extremum at $x=c$, and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
That is, if f has a local max or \min at c, then c is a critical number of f.

Critical Numbers

Fermat's Theorem

If f has a local extremum at $x=c$, and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
That is, if f has a local max or min at c, then c is a critical number of f.

On the other hand, not every critical point must be a local max or min.

KUKínsas

The Extreme Value Theorem

If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

(A) A discontinuous function on interval $[a, b]$ has a min but no max on interval $[a, b]$.

(B) A continuous function on interval (a, b) has no \min or max on open interval (a, b).

(C) Every continuous function on a closed interval $[a, b]$ has both a min and a max on $[a, b]$.

The Closed Interval Method

The Extreme Value Theorem

If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

How do we systematically find the absolute extrema?

The Closed Interval Method

To find the absolute extreme values of a continuous function f on a closed interval $[a, b]$:
(1) Find the values of f at the critical numbers in (a, b).
(2) Find the values of f at the endpoints (namely a and b).
(3) Compare the y-values. The largest value is the absolute maximum value; the smallest value is the absolute minimum value.

The Closed Interval Method

Example 3: Find the absolute extrema of $f(x)=2 x^{3}-15 x^{2}+24 x+7$ on the closed interval $[0,6]$.
Note that f is a polynomial, so it is continuous everywhere.

1. Check the critical numbers.
$f^{\prime}(x)=6 x^{2}-30 x+24=6(x-\underline{1})(x-\underline{4})$.
$f(1)=18$ and $f(4)=-9$.
2. Check the endpoints.
$f(0)=7$ and $f(6)=43$.
3. Compare the y-values.

Absolute minimum: $(4,-9)$
Absolute maximum: $(6,43)$

Finding Extrema

Example 4: Find the absolute extrema of $h(x)=x^{4 / 5}(x-4)^{2}$ on $[1,5]$.
Solution: The function h is continuous on [1,5], so the Extreme Value Theorem guarantees that it has absolute extrema and we can use the Closed Interval Method.

$$
\begin{gathered}
h^{\prime}(x)=\frac{4}{5} x^{-1 / 5}(x-4)^{2}+2 x^{4 / 5}(x-4)=\frac{4(x-4)^{2}+10 x(x-4)}{5 x^{1 / 5}} \\
h^{\prime}(x)=\frac{2(x-4)(7 x-8)}{5 x^{\frac{1}{5}}}
\end{gathered}
$$

- Critical numbers: $0, \frac{8}{7}, 4$. We can ignore 0 because it is outside $[1,5]$.
- Critical points and endpoints (y-coordinates approximate):

$$
(1,9) \quad(8 / 7,9.08) \quad(4,0) \quad(5,3.62)
$$

Finding Extrema

Example 4: Find the absolute extrema of $h(x)=x^{4 / 5}(x-4)^{2}$ on $[1,5]$.

