Section 4.2

Maximum and Minimum Values

- (1) Absolute and Local Extrema
- (2) The Extreme Value Theorem
- (3) The Closed Interval Method

Local Extrema

A function f has a **local maximum** at c if $f(c) \ge f(x)$ for x "near" c. That is, $f(c) \ge f(x)$ for all x in some open interval containing c.

A function f has a **local minimum** at c if $f(c) \le f(x)$ for x "near" c.

Local Extrema

- The term "extremum" is shorthand for "maximum or minimum."
- If f has a local extremum at c, then y = f(c) is a local extreme value and (c, f(c)) is a local extreme point.
- An endpoint of the domain f of cannot be a local extremum, because it cannot be contained in any open interval in the domain.
- A function does not necessarily have to have any local extrema:

No maximum

No minimum.

No maximum

Minimum value is 0.

Maximum value is 2.

Absolute Extrema

A function f has an **absolute maximum** at c if $f(c) \ge f(x)$ for **all** x.

A function f has an **absolute minimum** at c if $f(c) \le f(x)$ for **all** x.

 Unless it is an endpoint, each absolute extremum is also a local extremum.

Example 1: Absolute Extrema

A function can have **at most one** absolute maximum <u>value</u>, but **any** number of absolute maximum points.

Example 1(a): $f(x) = x^2$ has **no absolute maximum**, because x^2 can be arbitrarily large.

Example 1(b): $f(x) = -x^2$ has **absolute maximum** value 0 at the point (0,0).

Example 1(c): $f(x) = \cos(x)$ has absolute maximum value 1 and infinitely many absolute maximum points: $(k\pi,1)$ where k is any even integer.

Example 2: Local and Absolute Maxima and Minima

Local maxima: x = -2, x = 2, all x in (-1,0)

Local minima: x = 1, all x in [-1,0)

Absolute maximum: (-2,3) **Absolute minimum:** None

Critical Numbers and Fermat's Theorem

A number c in the domain of f is called a <u>critical number</u> if either f'(c) = 0 or f'(c) does not exist.

Fermat's Theorem

If f has a local extremum at x = c, and f'(c) exists, then f'(c) = 0.

That is, if f has a local max or min at c, then c is a critical number of f.

Critical Numbers

Fermat's Theorem

If f has a local extremum at x = c, and f'(c) exists, then f'(c) = 0.

That is, if f has a local max or min at c, then c is a critical number of f.

On the other hand, not every critical point must be a local max or min.

The Extreme Value Theorem

If f is continuous on a **closed** interval [a,b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a,b].

(B) A continuous function on interval (a,b) has no min or max on open interval (a,b).

(C) Every continuous function on a closed interval [a,b] has both a min and a max on [a,b].

The Closed Interval Method

The Extreme Value Theorem

If f is continuous on a **closed** interval [a,b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a,b].

How do we systematically find the absolute extrema?

The Closed Interval Method

To find the absolute extreme values of a continuous function f on a closed interval [a,b]:

- (1) Find the values of f at the **critical numbers** in (a,b).
- (2) Find the values of f at the **endpoints** (namely a and b).
- (3) Compare the *y*-values. The largest value is the absolute maximum value; the smallest value is the absolute minimum value.

The Closed Interval Method

Example 3: Find the absolute extrema of $f(x) = 2x^3 - 15x^2 + 24x + 7$ on the closed interval [0,6].

Note that f is a polynomial, so it is continuous everywhere.

1. Check the critical numbers.

$$f'(x) = 6x^2 - 30x + 24 = 6(x - 1)(x - 4).$$

 $f(1) = 18$ and $f(4) = -9.$

2. Check the endpoints.

$$f(0) = 7$$
 and $f(6) = 43$.

3. Compare the *y*-values.

Absolute minimum: (4,-9)Absolute maximum: (6,43)

Finding Extrema

Example 4: Find the absolute extrema of $h(x) = x^{4/5}(x-4)^2$ on [1,5].

Solution: The function h is continuous on [1,5], so the Extreme Value Theorem guarantees that it has absolute extrema and we can use the Closed Interval Method.

$$h'(x) = \frac{4}{5}x^{-1/5}(x-4)^2 + 2x^{4/5}(x-4) = \frac{4(x-4)^2 + 10x(x-4)}{5x^{1/5}}$$
$$h'(x) = \frac{2(x-4)(7x-8)}{5x^{\frac{1}{5}}}$$

- Critical numbers: $0, \frac{8}{7}, 4$. We can ignore 0 because it is outside [1,5].
- Critical points and endpoints (y-coordinates approximate):

$$(1,9)$$
 $(8/7, 9.08)$ $(4,0)$ $(5,3.62)$

Finding Extrema

Example 4: Find the absolute extrema of $h(x) = x^{4/5}(x-4)^2$ on [1,5].

